Yokonolide B, a novel inhibitor of auxin action, blocks degradation of AUX/IAA factors.
نویسندگان
چکیده
Yokonolide B (YkB; also known as A82548A), a spiroketal-macrolide, was isolated from Streptomyces diastatochromogenes B59 in a screen for inhibitors of beta-glucoronidase expression under the control of an auxin-responsive promoter in Arabidopsis. YkB inhibits the expression of auxin-inducible genes as shown using native and synthetic auxin promoters as well as using expression profiling of 8300 Arabidopsis gene probes but does not affect expression of an abscisic acid- and a gibberellin A3-inducible gene. The mechanism of action of YkB is to block AUX/IAA protein degradation; however, YkB is not a general proteasome inhibitor. YkB blocks auxin-dependent cell division and auxin-regulated epinastic growth mediated by auxin-binding protein 1. Gain of function mutants such as shy2-2, slr1, and axr2-1 encoding AUX/IAA transcriptional repressors and loss of function mutants encoding components of the ubiquitin-proteolytic pathway such as axr1-3 and tir1-1, which display increased AUX/IAAs protein stability, are less sensitive to YkB, although axr1 and tir1 mutants were sensitive to MG132, a general proteasome inhibitor, consistent with a site of action downstream of AXR1 and TIR. YkB-treated seedlings displayed similar phenotypes as dominant AUX/IAA mutants. Taken together, these results indicate that YkB acts to block AUX/IAA protein degradation upstream of AXR and TIR, links a shared element upstream of AUX/IAA protein stability to auxin-induced cell division/elongation and to auxin-binding protein 1, and provides a new tool to dissect auxin signal transduction.
منابع مشابه
Auxin Action in a Cell-Free System
The plant hormone auxin regulates diverse aspects of plant growth and development. Despite its importance, the mechanisms of auxin action remain poorly understood. In particular, the identities of the auxin receptor and other signaling proteins are unknown. Recent studies have shown that auxin acts by promoting the degradation of a family of transcriptional regulators called the Aux/IAA protein...
متن کاملAuxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.
Auxin plays a key role in regulation of almost all processes of plant growth and development. Different physiological processes are regulated by different ranges of auxin concentrations; however, the underlying mechanisms creating these differences are largely unknown. The first step of auxin signaling is auxin-dependent interaction of an auxin receptor with transcriptional co-repressors (Aux/I...
متن کاملA combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin
The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA pr...
متن کاملFunneling auxin action: specificity in signal transduction.
Auxin regulates a broad spectrum of developmental processes, mediating transcriptional regulation via protein degradation. The molecular mechanisms of auxin action are partially understood whereas the molecular basis for developmental specificity in auxin responses is currently unclear. Recent biochemical and chemical-genetics studies have narrowed the search for regulators in auxin signaling t...
متن کاملAuxin receptors and plant development: a new signaling paradigm.
The plant hormone auxin, in particular indole-3-acetic acid (IAA), is a key regulator of virtually every aspect of plant growth and development. Auxin regulates transcription by rapidly modulating levels of Aux/IAA proteins throughout development. Recent studies demonstrate that auxin perception occurs through a novel mechanism. Auxin binds to TIR1, the F-box subunit of the ubiquitin ligase com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 26 شماره
صفحات -
تاریخ انتشار 2003